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The problem of the impact on power and sample size calculation for routine QT studies
with ECG recording replicates under a parallel-group design and a crossover design is
examined. Replicate ECGs are defined as single ECG recorded within several minutes
of a nominal time (PhRMA, 2003). Formulas for sample size calculations with and
without adjustment for covariates such as some pharmacokinetic responses (e.g., AUC
or Cmax), which are known to be correlated to the QT intervals, were derived under
both the parallel-group design and the crossover design. The results indicate that the
approach of replicates may require a smaller sample size for achieving the same power
when the correlation coefficient between the recording replicates (or repeated measures)
is close to 0 (i.e., these replicate ECGs are almost independent). On the other hand,
if the correlation coefficient is close to 1, then there is not much gain regardless
of whether replicate ECGs are considered. In this paper, an approach to identifying
optimal allocation between the number of subjects and the number of replicates per
subject is proposed for achieving the maximum power under a fixed budget constraint.
The proposed approach can also be applied to minimize the cost for a given power.

Key Words: Correlation coefficient; Crossover design; Measurement error; Parallel-group design;
QT Studies.

1. INTRODUCTION

In clinical trials, a 12-lead electrocardiogram (ECG) is usually conducted for
assessment of potential cardiotoxicity induced by the treatment under study. On an
ECG tracing, the QT interval is measured from the beginning of the Q wave to the
end of the T wave. QT interval is often used to indirectly assess the delay in cardiac
repolarization, which can predispose one to the development of life-threatening
cardiac arrhythmias such as torsade de pointes (Moss, 1993). QTc interval refers to
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the QT interval corrected by heart rate. In clinical practice, it is recognized that the
prolongation of the QT/QTc interval is related to increased risk of cardiotoxicity
such as a life-threatening arrhythmia (Temple, 2003). Thus it is suggested that
a careful evaluation of potential QT/QTc prolongation be assessed for potential
drug-induced cardiotoxicity.

For development of a new pharmaceutical entity, most regulatory agencies
such as the United States Food and Drug Administration (FDA) require the
evaluation of proarrhythmic potential (see, e.g., CPMP, 1997; FDA/TPD, 2003;
ICH, 2005). As a result, a draft guidance on the clinical evaluation of QT/QTc
interval prolongation and proarrythmic potential for non-antiarrythmic drugs
is being prepared by the ICH (ICH E14). This draft guidance calls for a
placebo-controlled study in normal healthy volunteers with a positive control to
assess cardiotoxicity by examining QT/QTc prolongation. Under a valid study
design (e.g., a parallel-group design or a crossover design), ECGs will be collected at
baseline and at several time points posttreatment for each subject. Malik and Camm
(2001) recommend that it would be worthwhile to consider 3 to 5 replicate ECGs at
each time point within a 2- to 5-minute period. Replicate ECGs are then defined as
a single ECG recorded within several minutes of a nominal time (PhRMA, 2003).
Along this line, Strieter et al. (2003) studied the effect of replicate ECGs on QT
variability in health subjects. In practice, it is then of interest to investigate the
impact of recording replicates on power and sample size calculation in routine QT
studies.

In clinical trials, a prestudy power analysis for sample size calculation
is usually performed to ensure that the study will achieve a desired power
(or the probability of correctly detecting a clinically meaningful difference if such
a difference truly exists). For QT studies, the following information is necessarily
obtained prior to the conduct of the prestudy power analysis for sample size
calculation. The information includes (1) the variability associated with the primary
study endpoint such as the QT intervals (or the QT interval endpoint change from
baseline); (2) the maximal difference in QT interval between treatment groups;
and (3) the number of time points where QT measurements are taken. Under the
above assumptions, the procedures as described in Longford (1993); Chow et al.
(2003) can then be applied for sample size calculation under the study design (e.g., a
parallel-group design or a crossover design). Although QT/QTc studies involve
multiple time points, we will consider in this paper the simplified case with only one
time point. And we argue that considering one time point, though conservative, is
reasonable for sample size determination purposes. This is particularly true if we
focus on the time point where the maximal QT difference between treatments is
expected.

The remainder of this article is organized as follows. In the next section,
commonly used study designs such as a parallel-group design or a crossover design
for routine QT studies with recording replicates are briefly described. Power analyses
and the corresponding sample size calculations under a parallel-group design and a
crossover design are derived in Section 3. Extensions to the designs with covariates
(PK responses) are considered in Section 4. The sample size allocation optimization
is discussed in Section 5. Section 6 provides some concluding remarks.
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2. STUDY DESIGNS AND MODELS

A typical study design for QT studies is either a parallel-group design or a
crossover design depending on the PK profile of the investigational drug. Statistical
models under a parallel-group design and a crossover design are briefly outlined
below.

Under a parallel-group design, qualified subjects will be randomly assigned to
receive either treatment A or treatment B. ECGs will be collected at baseline and at
several time points posttreatment. Subjects will fast at least 3 hours and rest at least
10 minutes prior to the scheduled ECG measurements. Identical lead-placement and
the same ECG machine will be used for all measurements. As recommended by
Malik and Camm (2001), 3 to 5 recording replicate ECGs at each time point will be
obtained within a 2- to 5-minute period.

Let yijk be the QT interval observed from the kth recording replicate of the
jth subject who receives treatment i, where i = 1� 2� j = 1� � � � � n; and k = 1� � � � � K.
Consider the following model:

yijk = �i + eij + �ijk� (1)

where eij are independent and identically distributed as normal random variables
with mean 0 and variance �2

s (between-subject or intersubject variability) and �ijk
are independent and identically distributed as normal random variables with mean
0 and variance �2

e (within-subject or intrasubject variability or measurement error
variance). Thus, we have Var�yijk� = �2

s + �2
e .

Under a crossover design, qualified subjects will be randomly assigned to
receive one of the two sequences of test treatments under study. In other words,
subjects who are randomly assigned to sequence 1 will receive treatment 1 first and
then be crossed over to receive treatment 2 after a sufficient period of washout. Let
yijkl be the QT interval observed from the kth recording replicate of the jth subject
in the lth sequence who receives the ith treatment, where i = 1� 2� j = 1� � � � � n�
k = 1� � � � � K; and l = 1� 2. We consider the following model:

yijkl = �i + 	il + eijl + �ijkl� (2)

where 	il are independent and identically distributed normal random period effects
(period uniquely determined by sequence l and treatment i) with mean 0 and
variance �2

p, eijl are independent and identically distributed normal subject random
effects with mean 0 and variance �2

s , and �ijkl are independent and identically
distributed normal random errors with mean 0 and variance �2

e . Thus, Var�yijkl� =
�2
p + �2

s + �2
e .

To ensure a valid comparison between the parallel design and the crossover
design, we assume that �i� �

2
s , and �2

e are the same as those given in (1) and (2) and
consider an extra variability �2

p� which is due to the random period effect for the
crossover design.
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3. POWER AND SAMPLE SIZE CALCULATION

3.1. Parallel-Group Design

Under the parallel-group design as described in the previous section, to
evaluate the impact of recording replicates on power and sample size calculation,
for simplicity, we will consider only one time point posttreatment. The results for
recording replicates at several posttreatment intervals can be similarly obtained.
Under model (1), considering the sample mean of QT intervals of the jth subject
who receives the ith treatment, Var�ȳij�� = �2

s + �2e
K
. The hypotheses of interest

regarding treatment difference in QT interval are given by

H0 
 �1 − �2 ≥ 10� versus H1 
 �1 − �2 < 10� (3)

Under the null hypothesis of no treatment difference, the following statistic can be
derived:

T = ȳ1�� − ȳ2�� − 10√
2
n

(
�̂2
s + �̂2e

K

) �
where

�̂2
e =

1
2n�K − 1�

2∑
i=1

n∑
j=1

K∑
k=1

�yijk − ȳij��
2�

and

�̂2
s =

1
2�n− 1�

2∑
i=1

n∑
j=1

�ȳij� − ȳi���
2 − 1

2nK�K − 1�

2∑
i=1

n∑
j=1

K∑
k=1

�yijk − ȳij��
2�

Under the null hypothesis in (3), T has a central t-distribution with 2n− 2 degrees of
freedom. Let �2 = Var�yijk� = �2

s + �2
e and � = �2s

�2s+�2e
; then, under a given alternative

�1 − �2 = d < 10 in (3), the power of the test can be approximated as follows:

1− 	 ≈ �

(
− z +

�√
2
n

(
�+ 1−�

K

)
)
� (4)

where � = �10− d�/� is the relative effect size and � is the cumulative distribution
of a standard normal. To achieve the desired power of 1− 	 at the  level of
significance, the sample size needed per treatment is

n = 2�z + z	�
2

�2

(
�+ 1− �

K

)
� (5)

3.2. Crossover Design

Under a crossover model (2), it can be verified that ȳi��� is an unbiased
estimator of �i with variance

�2p
2 + �2s

2n + �2e
2nK . Thus, we used the following test statistic
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to test the hypotheses in (3):

T = ȳ1��� − ȳ2��� − 10√
�̂2
p + 1

n

(
�̂2
s + �̂2e

K

) �
where

�̂2
e =

1
4n�K − 1�

2∑
i=1

n∑
j=1

K∑
k=1

2∑
l=1

�yijkl − ȳij�l�
2�

�̂2
s =

1
4�n− 1�

2∑
i=1

n∑
j=1

2∑
l=1

�ȳij�l − ȳi��l�
2 − 1

4nK�K − 1�

2∑
i=1

n∑
j=1

K∑
k=1

2∑
l=1

�yijkl − ȳij�l�
2�

and

�̂2
p =

1
2

2∑
i=1

2∑
l=1

�ȳi��l − ȳ�����
2 − 1

4n�n− 1�

2∑
i=1

n∑
j=1

2∑
l=1

�ȳij�l − ȳi��l�
2�

Under the null hypothesis in (3), T has a central t-distribution with 2n− 4 degrees
of freedom. Let �2 and � be defined as in the previous section, and � = �2

p/�
2; then

Var�yijkl� = �2�1+ ��. Under a given alternative �1 − �2 = d < 10 in (3), the power
of the test can be approximated as follows:

1− 	 ≈ �

(
− z +

�√
�+ 1

n

(
�+ 1−�

K

)
)
� (6)

where � = �10− d�/�. To achieve the desired power of 1− 	 at the  level of
significance, the sample size needed per treatment is

n = �z + z	�
2

�2 − ��z + z	�
2

(
�+ 1− �

K

)
� (7)

3.3. Remarks

Let nold be the sample size with K = 1 (i.e., there is single measure for each
subject). Then, we have n = �nold + �1− ��nold/K. Thus, sample size (with recording
replicates) required for achieving the desired power is a weighted average of nold

and nold/K. Note that this relationship holds under both a parallel and a crossover
design. Table 1 provides sample sizes required under a chosen design (either parallel
or crossover) for achieving the same power with single recording (K = 1), three
recording replicates (K = 3), and five recording replicates (K = 5).

Note that if � closes to 0, then these repeated measures can be treated as
independent replicates. As it can be seen from the above, if � ≈ 0, then n ≈ nold/K.
In other words, sample size is indeed reduced when the correlation coefficient
between recording replicates is close to 0 (in this case, the recording replicates are
almost independent). Table 2 shows the sample size reduction for different values
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Table 1 Sample size for achieving the same
power with K recording replicates

K

� 1 3 5

1.0 n 1�00n 1�00n
0.9 n 0�93n 0�92n
0.8 n 0�86n 0�84n
0.7 n 0�80n 0�76n
0.6 n 0�73n 0�68n
0.5 n 0�66n 0�60n
0.4 n 0�60n 0�52n
0.3 n 0�53n 0�44n
0.2 n 0�46n 0�36n
0.1 n 0�40n 0�28n
0.0 n 0�33n 0�20n

of � under the parallel design. However, in practice, � is expected to be close to 1.
In this case, we have n ≈ nold. In other words, there is not much gain for considering
recording replicates in the study.

In practice it is of interest to know whether the use of a crossover design
can further reduce the sample size when other parameters such as d� �2, and �,
remain the same. Comparing formulas (5) and (7), we conclude that the sample
size reduction by using a crossover design depends on the parameter � = �2

p/�
2,

which is a measure of the relative magnitude of period variability with respect
to the within-period subject marginal variability. Let � = �

�z+z	�
2 ; then, by (5) and

(7), the sample size ncross under the crossover design and the sample size nparallel

under the parallel-group design satisfy ncross = nparallel
2�1−��

. When the random period effect
is negligible, that is, � ≈ 0 and hence � ≈ 0, we have ncross = nparallel

2 . This indicates
that the use of a crossover design could further reduce the sample size by half as
compared to a parallel-group design when the random period effect is negligible
(based on the comparison of the above formula and the formula given in [5]).
However, when the random period effect is not small, the use of a crossover design
may not result in sample size reduction. Table 3 shows the sample size under

Table 2 Sample sizes required under a parallel-group design

Power = 80% Power = 90%

� �

�K� �� 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(3, 0.3) 81 105 128 151 174 109 140 171 202 233
(3, 0.4) 46 59 72 85 98 61 79 96 114 131
(3, 0.5) 29 38 46 54 63 39 50 64 73 84
(5, 0.3) 63 91 119 147 174 84 121 159 196 233
(5, 0.4) 35 51 67 82 98 47 68 89 110 131
(5, 0.5) 23 33 43 53 63 30 44 57 71 84
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Table 3 Sample sizes required under a crossover design with � = 0�8

Power = 80% Power = 90%

� �

�K� �� 0.000 0.001 0.002 0.003 0.004 0.000 0.001 0.002 0.003 0.004

(3, 0.3) 76 83 92 102 116 101 115 132 156 190
(3, 0.4) 43 45 47 50 53 57 61 66 71 77
(3, 0.5) 27 28 29 30 31 36 38 40 42 44
(5, 0.3) 73 80 89 99 113 98 111 128 151 184
(5, 0.4) 41 43 46 48 51 55 59 64 69 75
(5, 0.5) 26 27 28 29 30 35 37 39 40 42

different values of �. It is seen that the possibility of sample size reduction under
a crossover design depends on whether the carryover effect of the QT intervals
could be avoided. As a result, it is suggested that a sufficient length of washout
period be applied between dosing periods to wear off the residual (or carryover)
effect from one dosing period to another. For a fixed sample size, the possibility of
power increase by crossover design also depends on parameter �. Figure 1 shows
that crossover design results in power increase when � is close to 0 but may result
in considerable power loss when � is not close to 0.

Figure 1 Power comparison under parallel-group and crossover designs.
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4. EXTENSION

In the previous section, we consider models without covariates. In practice,
additional information—such as some pharmacokinetic (PK) responses, e.g., area
under the blood or plasma concentration time curve (AUC), and the maximum
concentration (Cmax), which are known to be correlated to the QT intervals—may be
available, for example, in active-controlled QT studies. In this case, models (1) and
(2) are necessarily modified to include the PK responses as covariates for a more
accurate and reliable assessment of power and sample size calculation (Cheng and
Shao, 2007).

4.1. Parallel-Group Design

After the inclusion of the PK response as covariate, model (1) becomes

yijk = �i + �xij + eij + �ijk�

where xij is the PK response for subject j. The least square estimate of � is given by

�̂ =
∑2

i=1

∑n
j=1�ȳij� − ȳi����xij − x̄i��∑2
i=1

∑n
j=1�xij − x̄i��

2
�

Then �ȳ1�� − ȳ2���− �̂�x̄1� − x̄2�� is an unbiased estimator of �1 − �2 with variance

[
�x̄1� − x̄2��

2∑
ij�xij − x̄i��

2/n
+ 2

](
�+ 1− �

K

)
�2

n
�

which can be approximated by

[
��1 − �2�

2

�21 + �22
+ 2

](
�+ 1− �

K

)
�2

n
�

where �i = limn→� x̄i�, and �2i = limn→�
∑n

j=1�xij − x̄i��
2/n. Similar to Section 3.1, to

achieve the desired power of 1− 	 at the  level of significance, the sample size
needed per treatment group is given by

n = �z + z	�
2

�2

[
��1 − �2�

2

�21 + �22
+ 2

](
�+ 1− �

K

)
� (8)

In practice, �i and �2i are estimated by the corresponding sample mean and sample
variance from the pilot data. Note that if there are no covariates or the PK
responses are balanced across treatments (i.e., �1 = �2), then formula (8) reduces
to (5).
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4.2. Crossover Design

After the PK response is taken into consideration as a covariate, model (2)
becomes

yijkl = �i + �xijl + 	il + eijl + �ijkl�

Then �ȳ1��� − ȳ2����− �̂�x̄1�� − x̄2��� is an unbiased estimator of �1 − �2 with variance[
�+

(
�x̄1�� − x̄2���

2∑
ijl�xijl − x̄i���

2/n
+ 1

)(
�+ 1− �

K

)]
�2�

which can be approximated by[
�+

(
��1 − �2�

2

�21 + �22
+ 1

)(
�+ 1− �

K

)]
�2�

where �i = limn→� x̄i��, and �2i = limn→�
∑

jl�xijl − x̄i���
2/n. To achieve the desired

power of 1− 	 at the  level of significance, the sample size required per treatment
group is

n = �z + z	�
2

�2 − ��z + z	�
2

[
��1 − �2�

2

�21 + �22
+ 1

](
�+ 1− �

K

)
� (9)

When there are no covariates or PK responses that satisfy �1 = �2, formula (9)
reduces to (7).

Formulas (8) and (9) indicate that under either a parallel-group or a crossover
design, a larger sample size is required to achieve the same power if the covariate
information is to be incorporated.

5. ALLOCATION OPTIMIZATION

For optimization of the allocation of n (the number of subjects) and K (the
number of recording replicates) in routine QT studies with recording replicates,
we may consider two approaches, namely, the fixed-power approach and the
fixed-budget approach. The fixed-power approach is to find optimal allocation of
n and K for achieving a desired (fixed) power in the way that the total budget is
minimized. For the fixed-budget approach, the purpose is to find optimal allocation
of n and K for achieving maximum power.

In this section, for simplicity, we will describe only the solution under
a parallel-group design. The results under a crossover design can be similarly
obtained. Let C1 be the cost for recruiting a subject and C2 be the associated cost
for each QT recording replicate. Finding n and K for achieving a desired (fixed)
power of 1− 	 under the minimal budget is equivalent to minimizing C = nC1 +
nKC2 under the constraint of 2�z + z	�

2��K + 1− ��− nK�2 = 0. Under the given
constraint, the total cost can be expressed as a function of K

C�K� = 2�z + z	�
2

�2

(
�C2K + �1− ��C1

K
+ �C1 + �1− ��C2

)
�
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which attains its minimum at K = [√
C1�1−��

C2�

]+ 1, where function �t� denotes the
integer part of t. In practice, we may consider choosing the K value among K = 1� 3,
and 5 that results in the smallest C.

When the total budget is fixed, say, nC1 + nKC2 = C0, where C0 is a known
constant, the power function (4) becomes a function of K only

H�K� = �

(
− z +

�√
2�C1+C2K�

C0

(
�+ 1−�

K

)
)
�

whose maximal value also occurs at K = [√
C1�1−��

C2�

]+ 1.
Note that for any fixed �, both the fixed-power approach (for achieving a

desired power but minimizing the total budget) and the fixed-budget approach (for
achieving the minimal power under a fixed total budget) result in the same optimal

choice of K (the number of replicates), which is given by K = [√
C1�1−��

C2�

]+ 1.

6. CONCLUDING REMARKS

Under a parallel-group design, the possibility that the sample size can be
reduced depends on the parameter �, the correlation between the QT recording
replicates. As indicated earlier, when � closes to 0, these recording repeats can be
viewed as (almost) independent replicates. As a result, n ≈ nold/K. When � is close
to 1, we have n ≈ nold. Thus, there is not much gain for considering recording
replicates in the study. On the other hand, assuming that all other parameters
remain the same, the possibility of further reducing the sample size by a crossover
design depends on the parameter �, which is a measure of the magnitude of the
relative period effect.

When analyzing QT intervals with recording replicates, we may consider
change from baseline. It is, however, not clear which baseline should be used
when there are also recording replicates at baseline. Strieter et al. (2003) proposed
the use of the so-called time-matched change from baseline, which is defined as
measurement at a time point on the postbaseline day minus measurement at same
time point on the baseline. The statistical properties of this approach, however,
are not clear. In practice, it may be of interest to investigate relative merits and
disadvantages among the approaches using (1) the most recent recording replicates,
(2) the mean recording replicates, or (3) time-matched recording replicates as the
baseline. This requires further research.
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